THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA
Authors
Abstract:
The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless Laplacian spectrum.
similar resources
SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
full textsignless laplacian spectral moments of graphs and ordering some graphs with respect to them
let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $a(g)$ the adjacency matrix of $g$. the signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
full textGraphs determined by their (signless) Laplacian spectra
Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper, S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively. Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian spectra, respectively.
full textSome Graphs Determined by Their (signless) Laplacian Spectra
Let Wn = K1 ∨ Cn−1 be the wheel graph on n vertices, and let S(n, c, k) be the graph on n vertices obtained by attaching n− 2c− 2k − 1 pendant edges together with k hanging paths of length two at vertex v0, where v0 is the unique common vertex of c triangles. In this paper we show that S(n, c, k) (c > 1, k > 1) and Wn are determined by their signless Laplacian spectra, respectively. Moreover, w...
full textEla Graphs Determined by Their (signless) Laplacian Spectra
Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper, S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively. Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian spectra, respectively.
full textThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
full textMy Resources
Journal title
volume 7 issue 2
pages 131- 141
publication date 2020-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023